식품생명공학과 교육과정

학과소개

✓ 식품생명공학(Food Science and Biotechnology)은 식품과학(Food Science), 식품기술(Food Technology), 생명공학 (Biotechnology)의 학문을 포함하는 종합응용 학문이다. 식품생명공학에서는 식품 소재 자체의 특성을 생물학적, 물리학적, 화학적 기초 학문을 통하여 연구하고 식품가공에 기반이 되는 공학적 기초 지식을 탐구함과 더불어 식품소재의 선택, 저장, 가공, 포장, 유통과 관련된 응용학문을 주된 학문 분야로 삼고 있다. 최근에는 안전식품의 중요성이 강조됨에 따라 식품미생물, 유전자재조합식품, 건강기능식품 등 그 분야가 매우 광범위해지고 있다. 특히 정보기술(IT), 바이오기술(BT), 극미세기술 (NT), 환경기술(ET), 문화산업(CT) 등 다른 첨단기술들과 밀접한 관련을 맺고 있는 중요한 융합학문으로 진화하고 있다. 현재 식품생명공학과 내에는 식품가공학, 식품화학, 식품공학, 식품미생물 및 생물공학, 식품생화학, 기능성식품학, 식품나노 과학, 식품오믹스학, 식품면역학 등 9개의 세부적 분야로 나누어 이들 분야에 적합한 체계적인 교육과정으로 편성하고 있다. 식품관련 응용과학들에 대한 강의를 바탕으로 다양한 실험실습을 통한 실질적 교육에 역점을 두고 있으며, 효과적인 실험실 습을 위한 다양한 실험실습설비를 갖추고 있다. 졸업생들은 식품회사, 제약회사, 유통회사, 연구소, 학계 등에서 교육, 연구, 개발, 생산, 품질관리, 유통, 마케팅 등 다양한 분야에서 실력을 발휘하여 우리나라 식품관련학문 및 식품산업발전에 큰 기여를 하고 있다.

1. 교육목적

생명과학대학 식품생명공학과는 소정의 식품공학 교육과정을 통하여 식품산업관련 업계 및 학계에 우수한 인재를 배출함을 사명 으로 하고 있다.

2. 교육목표

- 최신 식품생명과학 기술의 교육, 국가와 사회의 발전에 따라서 요구되는 수준 높은 식품생명공학 관련 교육을 함으로서 건강 하고 풍요로운 복지건강사회의 실현에 기여
- 창의적 진취적 인재교육: 전문성과 창의성을 고루 갖춘 성실한 인재양성
- 협동과 사회봉사 교육: 더불어 잘 사는 사회를 이루기 위하여 협동하고 봉사하는 교육

3. 학과별 교과목 수

학과명	구분	전공기초	전 공 필수	전공선택	전공과목
식품생명공학과	과목수	7	5	34	46
<u> </u>	학점수	21	15	98	134

4. 식품안전교육트랙

- ① 목 적: 산학 협력 과목 수강을 통해 이론과 실무를 경험함으로서 식품산업에서 중요한 식품가공 및 안전 확보를 위한 이론, 실험, 실습 등의 심화교육을 통한 전문성을 확보하며, 산업계에는 필요한 인재를 교육하고 학생에게는 취업의 기회를 제공함
- ② 이수 요건: 식품안전교육트랙 교과목 편성표 [별표5] 참조

5. 대학 졸업 요건

1) 교육과정 기본구조표

			단	일전공과	정			С	나전공과경	벙		Ŀ	크게고기기	ч
출업 학과 이수		전공학점			타	건공학점				타	٦	부전공과정		
	학점	전공 기초	전공 필수	전공 선택	계	전공 인정 학점	전공 기초	전공 필수	전 공 선택	계	전공 인정 학점	전공 필수	전공 선택	계
식품생명공학과	130	15	15	46	76	6	6	15	27	48	6	15	6	21

2) 졸업논문

학부졸업논문 실험의 경우 4학년 2학기 시작 전에 종료를 하고, 학부졸업논문 작성 및 제출은 4학년 2학기말에 하도록 한다.

3) 졸업필수이수요건

- ① 영어강좌: 전공강좌 중에서 영어강좌를 3과목 이상, 편입생의 경우에는 1과목 이상 이수하여야 함(2008학번부터 적용)
- ② SW융합 교육: SW교양 또는 SW코딩 교과목에서 총 2강좌(6학점)을 이수하여야 함. SW교양 및 SW코딩 교과목과 유사 교과목(통계학, 1강좌)을 이수한 경우 대체 가능함(2018학번부터 적용, 편입생, 순수외국인 입학생 제외)
 - ※ 2014학번부터 2019학번까지 필수로 지정되어 있던 "취(창업)강좌" 교과목을 필수 지정과목에서 면제한다.
 - ※ 2018학번부터 2019학번까지 필수로 지정되어 있던 "식품생명공학캡스톤디자인 1 또는 식품생명공학캡스톤디자인 2" 교과목을 필수 지정과목에서 면제한다.

식품생명공학과 교육과정 시행세칙

제 1 장 총 칙

- 제1조(학과설치목적) 생명과학대학 식품생명공학과는 소정의 식품생명공학 교육과정을 통하여 식품관련업계 및 학계에 우수하 인 재를 배출함을 사명으로 하고 있다.
- 제2조(일반원칙) ① 식품생명공학을 단일전공, 다전공, 부전공하고자 하는 학생은 이 시행세칙에서 정하는 바에 따라 교과목을 이 수해야 한다.
 - ② 전공선택 과목은 필요에 따라서 1, 2개 학기에 개설할 수 있다.
 - ③ 학년도별 최소 1회 이상 교수와 학생, 기업과 동문을 대상으로 교과과정 만족도를 실시하고 그 결과를 지속적으로 반영한다.
 - ④ 교육과정은 입학년도에 기준하여 적용하는 것을 원칙으로 한다. 단, 다전공자에 한하여 전공교육과정은 선택하여 적용할 수 있다.

제 2 장 교양과정

제3조(교양과목 이수) ① 교양과목은 본 대학교 교양과정기본구조표에서 정한 소정의 학점을 취득하여야 한다.

② '전공탐색및기업가정신세미나'는 식품생명공학과에서 개설되는 교과목으로 이수하여야 한다.

제 3 장 전공과정

- 제4조(전공과목 이수) ① 식품생명공학과에서 개설하는 전공과목(전공기초, 전공필수, 전공선택)은 [별표1] 교육과정 편성표와 같다.
 - ② 전공기초는 필수 이수 과목인 일반물리(3학점), 생물1(3학점), 화학1(3학점), 미분적분학1(3학점) 과목을 포함하여 15학점 이상 이수하여야 한다.(전공기초 필수 교과목은 학과 지정 강좌를 수강해야 한다.)
 - ③ 식품생명공학전공을 단일전공, 다전공, 부전공과정으로 이수하고자 하는 자는 본 시행세칙에서 지정한 소정의 전공이수학점을 이수하여야 하며 [별표4]에서 제시된 학년별 교육과정 이수체계를 따를 것을 권장한다.
 - ④ 식품생명공학과에서 개설한 사회맞춤형 식품안전교육트랙을 이수하고자 하는 자는 본 시행세칙에서 지정한 소정의 트랙이수 학점을 충족하여야 한다.
- 제5조(타건공과목 이수) ① 식품생명공학과는 [별표2] 타건공인정과목표에서 인정하는 과목을 건공선택으로 6학점까지 인정할 수 있으며 생명과학대학내에서 다전공으로 이수할 경우 동일과목에 한하여 6학점만 중복 인정할 수 있다. 단, 이 경우에도 총 졸업 학점에는 다름이 없다.
 - ② 식품생명공학전공의 타전공인정과목은 [별표2] 타전공인정과목표와 같다.
- 제6조(대학원과목 이수) ① 3학년까지의 평균 평점이 4.0 이상인 학생은 대학원 전공지도교수의 승인을 받아 학부 학생의 이수가 허용된 대학원 교과목을 통산 6학점까지 이수할 수 있으며, 그 취득학점은 전공선택 학점으로 인정한다.
 - ② 대학원 과목의 취득학점이 B학점 이상인 경우에는 학사학위 취득에 필요한 학점의 초과분에 한하여 대학원 학칙에 따라 대학 원 진학 시 학점으로 인정받을 수 있다.

제 4 장 졸업이수요건

제7조(졸업이수학점) 식품생명공학과의 최저 졸업이수학점은 130학점이다

- 제8조(전공이수학점) ① 단일전공과정: 식품생명공학전공 학생으로서 단일전공자는 전공기초 15학점, 전공필수 15학점, 전공선택 46학점을 포함한 전공학점 76학점 이상 이수하여야 한다.
 - ② 다전공과정: 타전공 학생으로서 식품생명공학전공을 다전공과정으로 이수하는 학생은 전공기초 6학점(전공기초 필수 교과목 이수), 전공필수 15학점, 전공선택 27학점을 포함한 전공학점 48학점 이상 이수하여야 한다.
 - ③ 부전공과정: 식품생명공학전공을 부전공과정으로 이수하고자 하는 자는 전공필수 15학점, 전공선택 6학점을 포함하여 전공 학점 21학점 이상을 이수하여야 한다.
 - ④ 트랙과정: 식품생명공학과에서 개설한 사회맞춤형 식품안전교육트랙을 이수하고자 하는 자는 [별표1], [별표5]에서 지정한 교육과정을 이수하여야 한다.
- 제9조(편입생 전공이수학점) 편입생은 전적대학에서 이수한 학점 중 본교 학점인정심사에서 인정받은 학점을 제외한 나머지 학점 을 추가로 이수하여야 한다.
- 제10조(졸업능력인증) 졸업능력인증제는 폐지하며, 경과조치를 따른다.
- 제11조(영어강좌 이수학점) 2008학번 이후 학생은 전공과목 중에서 영어강좌를 3과목 이상, 편입생의 경우에는 1과목 이상 이수 하여 졸업요건을 충족하여야 한다.
- 제12조(SW융합 교육) SW교양 또는 SW코딩 교과목에서 총2강좌(6학점)을 이수하여야 함. SW교양 및 SW코딩 교과목과 유사 교과목(통계학, 1강좌)을 이수한 경우 대체 가능하다.(2018학번부터 적용, 편입생, 순수외국인 입학생 제외)

제 5 장 기 타

- 제13조(트랙이수방법) ① 식품생명공학과에서 운영하는 사회맞춤형 식품안전교육트랙을 이수하기 위해서는 신청기간에 본인이 직 접 신청하고 졸업 시 트랙 이수 여부 확인 후 트랙이수를 인증한다.
 - ② 식품안전교육트랙은 2018학년도부터 이수 가능하다.
- 제14조(경과조치) 2020학년도 전공교육과정의 개편시행에 따라 2020학년도 이전 취득하지 못한 전공이수과목의 학점 취득은 개 편된 교육과정의 전공이수과목으로 대체한다.[별표6]
- 제15조(보칙) 본 시행세칙에 정하지 아니한 사항은 학과회의 의결에 따른다.

부 칙

제1조(시행일) 본 시행세칙은 2023년 3월 1일부터 시행한다.

제2조(졸업능력인증세 폐지에 따른 경과조치) 졸업능력인증제 폐지는 2023학년도부터 모든 재적생에게 적용하되, 2023. 02. 28 이전 수료자는 희망자에 한하여 이수면제 처리한다.

[별표1]

교육과정 편성표

	이스					시	간		이수	개설	하기	부	식품안전	D/NI	
순번	이수 구분	교과목명	학수번호	학점	이론		실습	설계	학년		2학기	ㅜ 전공	교육트랙	평가	비고
1		생물 1	BIO101	3	3				1	0					필수
2		화학 1	APCH1121	3	3				1	0		0			필수
3		미분적분학	AMTH1009	3	3				1	0					필수
4	전공 기초	일반물리	APHY1004	3	3				1		0				필수
5	기소	통계학	AMTH1005	3	3				1	0	0	0			
6	-	생물 2 택1	BIO102	3	3				1		0				
7		화학 2	APCH1122	3	3				1		0				
1		생물유기화학	FSB231	3	3				2	0		0			
2		식품미생물학 및실험	FSB242	3	2		2		2		0	0	0		
3	전공	식품생화학 2	FSB381	3	3				3	0		0			
4	전공 필수	식품화학	FSB391	3	3				3	0		0			
5		식 품공 학 2	FSB395	3	3				3		0				
6		졸업논문(식품생명공학)	FSB401	0					4	0	0	0		0	
1		분석화학및실험	FSB221	3	2		2		2	0		0			
2		식품학개론	FSB281	3	3		_		2	0		0			
3	-	식품미생물학 I및실험	FSB241	3	2		2		2	0		0	0		
4	-	식품물리화학	FSB211	3	3				2	0		0			
5		 식품생화학 1	FSB232	3	3				2	_	0	0			
-6	-	식품과건강	FSB261	3	3				2		0	0	0		
7	-	 식품위생학	FSB472	3	3				2		0	0	0		
-/-8		 식품나노과학개론	FSB271	3	3				3	0		0			
9		식품시포의역계 간 식품소재학	FSB372	3	3				3		0	0			
10		바이오기능성식품소재	FSB361	3	3				3	0	0	0			
11		식품가공학및실험 1	FSB351	3	2		2		3	0		0			
12		<u>식품강</u> 학 1	FSB394	3	3				3	0		0			
13			FSB341	3	3				3	0					
14			FSB331	3	3				3		0	0			
15			FSB352	3	2		2		3		0	0	0		
16		식품기중약및설업 Z 식품화학 II	FSB352 FSB382	3	3				3		0	0			
17		식품와의 II 식품분석학및실험	FSB321	3	2		2		3		0	0			
	전공		FSB461	3	3				4		0	0			
18 19	선택	기능성식품학		3	3					0					
		식품저장학	FSB451	_	_				4	0	0	0			
20		식품영양학	FSB471	3	3				4	0		0			
21		식품생명공학	FSB441	3	3				4	0		0			
_22		식품독성학	FSB462	3	3				4		0	0	0		
_23		식품분자생물학	FSB482	3	3				4		0	0	0		
_24		식품면역학	FSB494	3	3		_		4		0				
25		산학협력식품안전실무	FSB429	3	2		2		4		0	0	0		
_ 26		식품안전정책과법령	FSB383	3	3				4	0					
_ 27		식품포장학	FSB495	3	3			_	4		0				
28		식품생명공학캡스톤디자인 1	FSB402	3				3	4	0				0	
29		식품생명공학캡스톤디자인 2	FSB403	3			2.0	3	4		0			0	
30		현장연수활동(식품생명공학)	FSB306	1-3			2-6		3-4	0	0			0	
31		연구연수활동 1(식품생명공학)	FSB304	1			2		3-4	0				0	
32		연구연수활동 2(식품생명공학)	FSB305	1			2		3-4		0			0	
33		독립심화학습 1(식품생명공학)	FSB392	3					3-4	0				0	
34		독립심화학습 2(식품생명공학)	FSB393	3					3-4		0			0	
35	저고	교과교육론(식품가공)	EDU3159	3	3				3	0					교직
36	전공 선택 (교직)	교과교재연구및지도법 (식품가공)	EDU3160	3	3				3		0				교직
37	\ I/	교과논리및논술(식품가공)	EDU3161	3	3				3		0				교직

[별표2]

타전공인정과목표

순번	과목개설 전공명	학수번호	교과목명	학점	인정이수구분	개시연도	비고
1	유전생명공학과	GEN407	면역학	3	전공선택		
2	유전생명공학과	GEN309	세포생물학 1	3	전공선택		
3	식품영양학과	FN1002	식품학	3	전공선택		
4	식품영양학과	FN4006	식품위생관계법규	3	전공선택		
5	식품영양학과	FN2006	식품분석및실험	3	전공선택		
6	식품영양학과	FN2011	식품가공및저장학	3	전공선택		
7	식품영양학과	FN1003	영양학	3	전공선택		

[별표3]

선수과목 지정표

순번	전공명		교과목명(후수과목)				비고	
		학수번호	교과목명	학점	학수번호	교과목명	학점	
1	식품생명공학과	FSB395	식품공학 2	3	FSB394	식 품공 학 1	3	
2	식품생명공학과	FSB242	식품미생물학 II및실험	3	FSB241	식품미생물학 및실험	3	
3	식품생명공학과	FSB351	식품가공학및실험 1	3	FSB281	식품학개론	3	
4	식품생명공학과	FSB352	식품가공학및실험 2	3	FSB281	식품학개론	3	
5	식품생명공학과	FSB451	식품저장학	3	FSB351	식품가공학및실험 1	3	

^{*} 우측 선수과목 수강 시에 좌측 후수과목 수강을 허용함

[별표4]

식품생명공학과 교육과정 이수체계도

1. 교육과정 특징

식품생명공학 관련 다양한 교괴목 개설을 통해 관련 식품생명산업의 발전 및 다가오는 건강 지향적 복지사회에 이바지할 창조적 인재를 육성, 배출하고자 함

2. 단일전공 교육과정 이수체계도

교육과정 이수체계 * 이수체계도는 학과별 변경 가능 1학기 전공기초: 생물 1(필수), 화학 1(필수), 미분적분학(필수) 1학년 전공기초: 일반물리(필수), 통계학 2학기 전공필수: 생물유기화학 1학기 전공선택: 식품학개론, 식품미생물학 I및실험, 분석화학및실험, 식품물리화학 2학년 전공필수: 식품미생물학 Ⅱ및실험 2학기 전공선택: 식품생화학 1, 식품과건강, 식품위생학 전공필수: 식품화학 I, 식품생화학 2 1학기 전공선택: 식품가공학및실험 1, 식품공학 1, 바이오기능성식품소재, 식품나노과학개론, 독립심화학습 1(식품생명공학) 3학년 전공필수: 식품공학 2 전공선택: 식품가공학및실험 2, 유전자재조합식품론, 식품화학 II, 식품분석학및실험, 발효미생물공학, 식품소재학, 2학기 독립심화학습 2(식품생명공학) 전공필수 : 졸업논문(식품생명공학) 전공선택: 식품영양학, 식품저장학, 식품생명공학, 기능성식품학, 식품생명공학캡스톤디자인 1, 1학기 식품안전정책과법령 4학년 전공선택: 식품분자생물학, 식품독성학, 기능성식품학, 산학협력식품안전실무, 식품면역학, 2학기 식품포장학, 식품생명공학캡스톤디자인 2

3. 다전공 교육과정 이수체계도

교육괴	정 이수처	* 이수체계도는 학과별 변경 가능
1 등니 크	1학기	전공기초:화학 1
1학년	2학기	전공기초 : 통계학
2학년	1학기	전공필수 : 생물유기화학 전공선택 : 식품학개론, 식품미생물학 I및실험, 분석화학및실험, 식품물리화학
2억년	2학기	전공필수 : 식품미생물학 Ⅱ및실험 전공선택 : 식품생화학 1, 식품과건강, 식품위생학
つきには	1학기	전공필수:식품화학 I, 식품생화학 2 전공선택:식품가공학및실험 1, 식품공학 1, 식품분자생물학, 식품나노과학개론
3학년	2학기	전공필수 : 식품공학 2 전공선택 : 식품가공학및실험 2, 유전자재조합식품론, 식품화학 Ⅱ, 식품분석학및실험, 발효미생물공학, 식품소재학
4학년	1학기	전공필수:졸업논문(식품생명공학) 전공선택:식품영양학, 식품저장학, 식품생명공학, 기능성식품학, 식품생명공학캡스톤디자인 1, 식품안정정책과 법령
	2학기	전공선택: 식품분자생물학, 식품독성학, 기능성식품학, 산학협력식품안전실무, 식품면역학, 식품포장학, 식품생명공학캡스톤디자인 2

다전공 권장분야

☑ 다전공 권장분야: 경영학

☑ 다전공 권장배경:식품 마케팅 분야의 지속적 성장 발전 가능성

[별표5]

식품생명공학과 사회맞춤형 식품안전교육트랙 교과목 편성표

트랙과정 운영목적

- ☑ 실제 식품산업에서 가장 중요한 요소인 식품가공 및 유통시 식품의 안전을 확보하기 위한 실무교육 트랙 운영
- ☑ 안전한 식품을 통한 국민건강을 확보하고자 하며 졸업생들의 취업에 기여하고자 함
- ☑ 현장실무에 강한 식품관련 인재를 양성하는 과정

트랙과정 이수요건

- ☑ 식품안전트랙 지정과목 중 식품위생학(필수)을 포함하여 총 15학점 이상 이수하여야 한다.
- ☑ 트랙과정 이수자의 경우도 단일·다전공 이수를 위한 전공기초, 전공필수, 전공선택 등 학과 지정 기본이수요건을 반드시 충족 하여야 하다.

단일전공 이수자 트랙과정 이수체계도

구분	학점	교과목명	이수학점	이수구분
	필수	식품위생학(3)	3	전공선택
사회맞춤형 식품안전 교육트랙	선택	신학협력식품안전실무(3) 식품과건강(3) 유전자재조합식품론(3) 식품독성학(3) 식품미생물학 I및실험(3) 식품분자생물학(3) 식품생명공학캡스톤디자인 1(3) 식품생명공학캡스톤디자인 2(3)	12	전공선택

[별표6]

대체교과목표

순번	전공명	현행교과과정		구교과과정		
		교과목명	학점	교과목명	학점	
1	식품생명공학	식품공학 1	3	식 품공 학 l및실험	3	
2	식품생명공학	식품공학 2	3	식 품공 학 II및실험	3	
3	식품생명공학	식품품질관리학	3	식품품질관리학및실험	3	
4	식품생명공학	음료산업기술	3	음료산업기술및실험	3	

[별표7]

식품생명공학과 교과목 해설

• 생물 1 (Biology 1)

생물학관련 전공의 준비를 위한 과목으로 생물학적 기구의 이해를 강조, 생명의 개념을 이해시킨다.

This class was designed for the freshmen who are going to major in Biotechnology and related fields. The students will understand the basic structure and chemical compositions of organisms. This class is essential for taking the upper level classes such as Microbiology, Biochemistry, and Molecular Biology.

• 생물 2 (Biology 2)

생물학적 관련 전공의 준비를 위한 과목으로, 생물학적 구조와 생태를 강조, 생명의 개념을 이해시킨다.

This class was designed for the freshmen who are going to major in Biotechnology and related fields. The students will understand the phylogenetic principles, animal structure and functions, and plant structures and functions. This class is essential for taking the upper level classes such as Plant Physiology, Animal Physiology, Genetics, and Immunology.

• 화학 1 (Chemistry 1)

화학 1은 이공학도로서의 기본 소양을 배양함을 목적으로 하는 두 학기 짜리 화학 과목의 첫 번째 이다. 이 과목에서는 과학이나 공학을 전공하고자 하는 학생이라면 누구라도 알아야 할 화학전반에 걸친 기초적인 사항을 배운다. 이 과목을 배운 학생은 생활 속의 여러 현상을 분자 수준에서 이해하게 된다. 고등학교에서 공통과학을 배운 학생들이 수강 가능하다.

Introductory Chemistry I provides the basic concepts of chemistry with the science and engineering majors. This course is the first half of the two semester introductory chemistry courses. In this course, the descriptions of the nature are explained at the molecular level with the chemistry terms. Students are expected to have taken the general science class at high school

• 화학 2 (Chemistry 2)

화학 2는 이공학도로서의 기본 소양을 배양함을 목적으로 한다.(선수과목 : 화학 1) 이 과목에서는 과학이나 공학을 전공하고자 하 는 학생이라면 누구라도 알아야 할 화학 전반에 걸친 기초적인 사항을 배운다. 이 과목을 배운 학생은 생활 속의 여러 현상을 분자 수준에서 이해하게 된다. 고등학교에서 공통과학을 배운 학생들이 수강 가능하다.

Introductory Chemistry II provides the basic concepts of chemistry with the science and engineering majors. This course is the second half of the two semester introductory chemistry courses. In this course, the descriptions of the nature are explained at the molecular level with the chemistry terms. Students are expected to have taken the general science class at high school.

• 미적분학 (Calculus)

일변수 함수의 미분, 적분 이론과 그 응용에 대하여 공부한다.

In this course, we study the derivatives and integral theories of functions (functions of one variable), the partial derivatives of functions of several variables, and their applications.

• 통계학 (Concepts of Statistics)

확률변수(Discrete and continuous random variable)의 개념과 분포, 기대치, 분산 등을 배운 후에 joint 분포, marginal 분포, conditional 분포와 중심 극한 정리를 배운다.

This is an introductory course in probability which include discrete and continuous random variables, distribution functions, expectations, variances, joint pdf, marginal pdf, conditional pdf and central limit theorem.

• 일반물리 (General Physics)

단학기 과목으로 물리학 전반에 대한 기본 개념을 이해시킨다. 역학, 열물리, 전자기, 파동 등을 다룬다.

Learn and understand basic concept of physics and physical thinking covering briedly on mechanics, waves, thermodynamics, electromagnetism, optics and modern physics.

• 생물유기화학 (Bio-Organic Chemistry)

식품의 필수성분인 단백질, 탄수화물, 핵산, 지방 등의 생체분자 중 유기화합물에 대한 일반구조, 반응 및 생합성에 대한 기초적인 이론을 다룬다.

A course dealing with the basic theories of organic compounds. Emphasis is put on mastering the structure and function of carbohydrates, fat, protein and nucleic acids.

• 식품미생물학 II및실험 (Food Microbiology II and Lab)

식품가공, 저장 및 위생에 관련된 미생물의 특성을 강의, 실험하며, 또한 식품 중 아미노산, 핵산, 유기산, 주정 및 기능성 식품생산 및 수율 증식을 위한 발효기법에 대하여 다룬다.

A course dealing with the use and industrial application of food microorganisms, and molecular biological aspects of food microorganisms. Also basic experiments related with recombinant DNA technology will be covered in this course.

• 식품생화학 1·2 (Food Biochemistry 1·2)

식품의 주요 구성 성분인 탄수화물, 단백질, 지방의 주요 특성과 작용 및 대사과정과 합성과정을 강의하는 내용으로 구성되어 있으 며, 생물, 미생물, 공학의 교과 과정을 모두 이수해야 하는 식품생명공학 전공에서 인체 내에서 식품의 생합성, 분해과정을 폭넓게 이해시키기 위해 개설된 과목이다.

A course dealing with the application and knowledge of biochemistry in food processing. Topics include(I) the structure and function of protein and nucleic acid and(II) metabolism of carbohydrates, protein and fat.

식품화학 I (Food Chemistry I)

식품화학 I에서는 식품을 구성하고 있는 주요성분 즉, 수분, 탄수화물, 지질, 단백질, 아미노산에 대하여 화학적, 생화학적 특성과 가공저장 과정에서의 화학적 변화를 다룬다.

Topics on major constituents of foods including water, carbohydrates, lipids, proteins, and amino acids, and their chemical and biochemical characteristics and changes during processing and storage.

• 식품공학 2 (Food Engineering 2)

식품공학 2에서는 유체 및 열 흐름의 기초적인 개념을 가지고 적용하는 단위조작으로서 식품 및 생물소재 가공에 필요한 가열살균 공정, 냉장 및 냉동, 건조공정, 증발 및 농축공정에 관한 기본 이론과 공정설계를 다룬다.

This course deals with the basic theroy and process design for heat sterilization, refrigeration, drying, and evaporation process required for food and biological material processing.

• 분석화학및실험 (Analytical Chemistry and Lab)

식품성분을 화학적인 방법으로 분석하기 위한 사전 과정으로서 일반분석의 기초 원리를 이해하고 실험을 통하여 분석방법과 기술을 익힌다. 시약의 조제, 여러 가지 적정분석법, 전기화학분석법, 분광분석법을 다룬다.

An introduction to the theory and application of chemical methods for determining the chemical constituents of foods. Topics include preparation of chemical solution, various titration methods, redox chemistry, and spectrophotometry.

• 식품학개론 (Introduction to Food Science)

식품생명공학 전공을 처음 선택한 학생들에게 식품과 영양에 대한 전반적인 지식을 넓히기 위하여 식품의 역사, 종류, 제조방법,

성분, 영양, 감별, 용도, 취급 등에 대한 개요를 다룬다.

This Course is for the students who choose the food science and biotechnology as their major. This Course provides basic information of food science, including types, classification, composition and processing of various foods.

• 식품미생물학 I및실험 (Food Microbiology I and Lab)

식품의 발효, 저장, 부패 등에 관여하는 미생물의 분류학적 위치, 형태학적 특성, 기능, 생육 및 대사과정에 관한 원리습득과 그에 관한 실험을 실시한다.

General microbiological knowledges related with food microorganisms such as the structure of cells, the physiological characteristics of microorganisms will be dealt in the class. The class includes the experimental class, in which basic microbiological techniques will be provided.

• 식품물리화학 (Food Physical Chemistry)

식품물리화학에서는 생물, 특히 식품계에서 일어나는 제반현상을 규명하기 위하여 물리화학의 기초이론을 도입시켜 식품계의 분자 구조전이현상, 열역학의 개념 및 에너지흐름을 다룬다. 또한 식품의 대부분을 차지하는 유체에 관한 현상을 다루며 점도, 표면장력, 반응평형 및 반응속도론에 관한 기초이론을 다룬다.

The purpose of this course is to teach the basic theories of physics to the students who may apply this physical knowledge to food processing. Emphasis is put on mastering the structure of the molecule, energy balance, thermodynamics, physiochemical balance, cell wall, reaction mechanism, kinetics, etc.

식품과건강 (Food and Health)

식품에 내재한 기능성 생리활성물질을 소개하고, 건강에 유익한 효능을 발휘하는 생리활성물질의 기능성 및 작용 원리를 강의한다. In this course, functional bioactives in foods will be introduced to students. Their beneficial effects to our health in the proper choice of foods will be discussed with respect to their functionality and principal mechanism.

• 식품위생학 (Food Safety and Toxicology)

식품생명공학 전반에 걸쳐 식용으로 사용되는 재료의 수확, 가공, 저장, 유통, 조리 과정에 걸쳐 관계되는 위생 관련 여러 요소들을 분석, 검출하는 과정을 다룬다.

A study of the principles of food pathogen, food borne illness, sanitation, personal hygiene, health regulations and inspections for the assurance of food safety. The principles of the Hazard Analysis Critical Control Point program(HACCP) will also be studied.

• 식품나노과학개론 (Food Nanotechnology)

본 강좌는 나노기술에 대한 전반적인 소개와, 나노기술의 생명/식품과학에의 응용에 대한 전반적인 이해를 목표로 한다. 우수한 생물물질과 인간이 만든 나노소재와의 융합에 관한 내용을 다루고 있으며 나노의학, 나노바이오소자, 나노식품소재 등의 주제들이 실례를 통해 소개된다.

This course provides students with an understanding of the nanotechnology and its applications to the Life Sciences and Food Science. The area of application includes nanomedicine, nanobiosensor, nano-bio devices and food nanomaterials.

• 식품소재학 (Food Materials Science)

식품의 재료들이 가지고 있는 물리적, 화학적, 생물학적 특성을 이해하고 이를 바탕으로 가공, 유통, 저장, 조리되는 과정에서 일어 날 수 있는 변화를 공부하는 학문이다. 각 원료별 특성에 대한 이해와 이들의 활용에 관한 학문이다.

Food Materials Science is designed to learn the physical, chemical and biological properties of food materials and the phenomenon taking place during the storage and processing of the food materials. This course also provides the opportunity to discuss about the properties of major food components and their applications in food industry.

• 바이오기능성식품소재 (Bio-Functional Food Materials)

생물자원으로부터 유래되어 기능성 식품의 원재료로 사용할 수 있는 식품소재의 화학적, 생화학적 특성에 대하여 강의한다. This lecture provides the chemical and biochemical characteristics of bio-functional food materials which come from natural resources.

• 식품가공학및실험 1·2 (Food Processing & Laboratory 1·2)

농산 및 축산식품의 가공실험을 통하여 이미 터득한 가공워리를 다시 정리하고 그 가공기술과 실험결과를 분석, 검토, 종합, 보고하 는 힘을 기른다.

This course deals with the practical food processing technology of agricultural foods. This course provides theories and principles of food processing through lecture and experiments.

• 식품공학 1 (Food Engineering 1)

식품공학 1에서는 식품산업에서 사용되는 각종 단위조작의 원리와 응용을 이해하기 위하여 질량 및 에너지 수지, 유체역학, 열전달, 물질 전달에 관한 기본 이론과 공정설계를 다룬다.

This course deals with the basic theories and process design on balances of mass and energy, fluid mechanics, and mass and heat transfers to understand the principles and applications of various unit operations in food industry.

• 발효미생물공학 (Fermentation and Microbial Engineering)

식품에 관련된 미생물을 이용하여 주정, 아미노산, 핵산, 유기산 및 단세포단백질 제조를 위한 세포배양에 관하여 강의하며 특히 분리공정 등을 다룬다.

A course dealing with the basic knowledge about fermentation and biochemical engineering aspects related with applied microorganisms.

• 유전자재조합식품론 (Genetically Modified Foods)

유전자 재조합 식품의 제조방법 및 인체안정성, 환경 위해성 평가방법에 대하여 강의한다.

This lecture covers the development of genetically modified foods, safety-assessment on human and risk-assessment on environment

• 식품화학 Ⅱ (Food Chemistry Ⅱ)

식품화학 II에서는 단백질, 효소, 아미노산과 식품에서 미량성분인 비타민, 색소, 향미 등의 화학적 특성과 가공 및 저장과정에 따른 화학적 변화에 대해서 다룬다.

Chemical properties of proteins, enzymes, amino acids, vitamins, colorants, flavors and chemical changes of theses compounds during processing and storage.

• 식품분석학및실험 (Food Analysis and Lab)

식품의 기본구성성분인 수분, 지방, 탄수화물, 단백질, 회분, 섬유질 등의 화합물에 대해서 분석이론을 이해하고 실제식품을 이용하 여 분석실험을 함으로써 정량분석기술과 결과분석의 능력을 기른다.

Theory and application of analytical chemistry for the analysis of basic food constituents such as moisture, lipids, carbohydrates, proteins, ash, and fibers.

• 기능성식품학 (Functional Foods)

인체 내에서 생체방어, 리듬조절, 질병방지와 회복 등에 관한 생체조절 기능을 하는 기능성 식품을 알아본다.

A course dealing with basic scientific knowledge relevant to functional foods. Topics include the beneficial functional properties of pro- and prebiotics, nutraceuticals, phytochemicals and novel foods(including GMOs).

• 식품저장학 (Food Preservation)

가공식품과 천연식품을 저장함에 있어서 야기되는 저해요인을 밝히고 냉동, 저장, 건조, 방사선 등의 식품 저장법에 대하여 강의한다. This course deals with the examination of the obstruction in preserving manufactured foods and natural foods, including the study of the theories and methods needed to preserve food by refrigeration, drying, and radio rays, etc. materials and to modify food microorganisms will be covered in this course.

• 식품영양학 (Food Nutrition)

식품 중에 포학되어 있는 영양소의 특징과 체내에서의 이동경로, 그리고, 신체의 정상적인 성장과 유지를 위한 역할 등을 연구할 수 있도록 기초적인 이론배경을 제공하기 위해 개설된 과목이다.

Fundamental principles of normal nutrition and the importance of nutrition in promoting growth and health. Emphasis will be given to the basic food constituents and their physiological relationships within the body.

• 식품생명공학 (Food Biotechnology)

식품미생물의 생명공학적 응용과 유전공학기술을 이용한 식품효소의 생산 및 응용에 대해 알아본다.

A course dealing with the biotechnology in the food science. Basic recombinant DNA techniques, application of industrial enzymes, and modern biotechnology will be covered in this course.

식품독성학 (Food Toxicology)

식품독성학의 기본 개념, 독성물질들이 인체에 미치는 영향 및 대사과정, 식품가공 중 발생하는 독성물질의 위해성 등을 다루는 과

This lecture covers the concepts about various food toxicants related with many food materials and the toxical effects on the human physiology.

• 식품분자생물학 (Food Molecular Biology)

식품과 관련이 있는 생명체 내에서 이루어지는 생명 현상을 분자 수준에서 이해하고 이를 응용하여 재조합 미생물의 활용을 통한 식품 소재 생산 또는 식품 미생물의 식품산업에서의 이용 가치를 높이는 기술에 대하여 학습한다.

In this course, the molecular level understanding of biological phenomena in food-related microorganisms will be studied. Also the tools and application of recombinant DNA technology to increase the value of food bioindustry will be studied.

• 산학협력식품안전실무 (Food Safety Field Study)

실제 식품산업에서 가장 중요한 요소인 식품가공 및 유통시 식품의 안전을 확보하기 위한 실무교육이 반드시 필요하며, 식품안전 실무에 대한 교육을 진행하여 현장실무에 강한 식품관련 인재를 양성하여 안전한 식품을 통한 국민건강을 확보한다.

Food safety field study is an important application and training class to secure food safety during food processing and distribution. By providing experience for HACCP (Hazard Analysus and Critical Control Point), a systematic food safety management approach in the field of food safety to train food safety experts for contribution of safe food production in the industry.

• 식품안전정책과법령 (Food Safety Policy and Regulations)

식품 안전 관련 다양한 분야의 정책과 관련 법률에 대한 이해와 지식을 함양하고 유해물질 안전관리 체계, 위해 평가, 식중독 예방, GMO, 해썹 등의 정책 방향과 식품위생법, 수입식품안전관리법 등 식품 법령과 적용 사례 등을 학습한다.

This course intends to enhance understanding and knowledge of various areas of food safety policy and related laws and regulations by studying the policy for national contaminant control system, risk assessment, foodborne illness prevention, GMO, HACCP and related laws and regulatory practices of Food Hygiene Act and Special Act of Imported Food Safety Control, etc.

식품면역학 (Food Immunology)

인체의 면역기능을 구성하는 요소를 세포, 조직 및 신호전달물질의 수준에서 이해하고, 이들 요소의 상호작용에 대하여 학습한다. 나아가, 식품섭취를 통하여 공급되는 영양성분들이 면역기작을 조절하는 메커니즘을 생체 내 분자수준에서 이해한다.

The class discusses components of immune systems, including cells, organs, and signaling mediators. The dietary regulation of immune systems will be further covered with focus on underlying molecular mechanisms.

식품포장학 (Food Packaging)

식품의 유통과정에 있어서 그 품질과 위생적인 안전성을 유지하고 나아가 상품의 가치를 증대시키기 위한 식품 포장의 기능, 식품의 포장에 이용되는 각종 포장재료의 종류와 특성, 포장방법과 기술, 포장재료의 시험법 등에 관한 이론을 다룬다.

This course deals with the functions of a package, types and characteristics of various packaging materials, packaging methods, and testing methods used in food packaging for maintaining food quality and safety during food distribution and improving value of food product.

• 식품생명공학캡스톤디자인 1 (Food Science and Biotechnology Capstone 1)

식품생명공학과 4학년 1학기 학생을 대상으로 전공과목에서 배운 전공지식을 실제로 식품 관련 연구를 기획하고 실험실습을 수행 하여 그 결과를 도출하고 전공지식을 심화하는 과목이다.(졸업필수)

For 4th grade undergraduate students in the department of Food Science and Biotechnology during spring semester, this class aims at making them design and perform the experiments by themselves to extend their knowledge about Food Science and Biotechnology.

• 식품생명공학캡스톤디자인 2 (Food Science and Biotechnology Capstone 2)

식품생명공학과 4학년 2학기 학생을 대상으로 전공과목에서 배운 전공지식을 실제로 식품 관련 연구를 기획하고 실험실습을 수행 하여 그 결과를 도출하고 전공지식을 심화하는 과목이다.(졸업필수)

For 4th grade undergraduate students in the department of Food Science and Biotechnology during fall semester, this class aims at making them design and perform the experiments by themselves to extend their knowledge about Food Science and Biotechnology.

• 현장연수활동(식품생명공학) (Internship in Food Science & Biotechnology)

관련 기업에서 실무 경험을 통해 전공지식을 응용한다.(80시간 이상: 전공선택 1학점, 120시간 이상: 전공선택 2학점, 160시간 이상: 전공선택 3학점(1일 8시간 이내)

This course gives a chance to apply theoretical knowledges in a field.

• 연구연수활동 1, 2(식품생명공학) (Research & Training Activity 1, 2(Food Science and Technology))

식품생명공학과는 식품 미생물실험실, 식품 생화학 실험실, 식품 화학 실험실, 식품 공학 실험실, 식품 가공학 실험실, 기능성식품학 연구실, 식품 나노과학 연구실 로 구성되어 있으며 각 실험실에서 다양한 연구를 수행 중에 있다. 이에 학사과정에서 당 실험실에서 연구 연수활동에 참여하게 되면 이론으로 배운 지식을 연구를 통해 직접 확인하여 봄으로써 관심분야의 전문지식을 심화 할 수 있다. Department of Food Science and Biotechnology is composed of seven laboratories; Food Microbiology and Biotechnology lab., Food Biochemistry lab., Food Chemistry Lab, Food Processing Lab, Functional Food Lab, Food Nanotechnology Lab, and theses laboratories are carried out various research areas. Therefore, this Research & Training Activity class should be open to improve student's knowledge for Food science by participations of undergraduate students in each research area.

• 교과교육론(식품가공) (Theoretical Development and Analysis of Subjects)

교과교육의 이론적, 역사적 배경, 교과교육의 목표 및 중·고등학교 새 교육과정의 분석 등 교과교육 전반에 관하여 연구한다.

The course aims to understand the characteristics of various subject matters and the basic models of curriculum for each discipline and foster the ability to select and organize desirable curriculum contents.

• 교과교재연구및지도법(식품가공) (Study of Unit Plans)

교과의 성격, 중·고등학교 교재의 분석, 수업안의 작성, 교수방법 등 교과지도의 실제경험을 쌓게 한다.

Learners in the course are able to promote the basic competency as curriculum expert to guide their students in each subject matter and utilize appropriate teaching method in relation to the age and developmental level of the students, the subject-matter content, the objective of the lesson, and evaluation method.

• 교과논리및논술(식품가공) (Logical Thinking and Statement)

학생들을 지도하는데 필요한 교과의 논리적 사고방식과 깊이 있는 논술의 작성을 가르침으로써 학생들에게 기존의 학습과정과 관련 된 주제에 참여하여 토론하는 역량을 키운다.

Logical thinking skills and rigorous writing of statement in classroom on the basis of educational curriculum. Enables

• 독립심화학습 1·2(식품생명공학) (Independent Learning & Research 1·2)

독립심화학습은 전공과 관련된 주제에 대하여, 학생이 일대일(또는 소그룹) 형태로 교수의 지도를 받아, 주제에 대해 몰입하여 학습하 고 그 결과를 도출하는 자기 주도 형태의 학습이다. 실제 연구실에서 수업시간에 배운 전공지식을 종합적으로 활용하여 주제에 대한 연구 활동을 하고, 지식이나 현재와 미래의 문제점에 대한 해결책 탐구를 하여, 그 결과를 논문이나 학술대회 발표 형태로 제출하는 학습을 한다.

This course is a self-directed learning on a subject related to your major. Along with tutoring by a professor in the form of a one-to-one(or small group), students research and study on the subject using their academic knowledge of majors to produce results. Also, they explore new knowledge and solutions to current and future problems. With the results of this course, students will learn how to submit a paper and to present in the academic conferences.

[별표8]

식품생명공학과(전공) 전공능력

1. 식품생명공학과 교육목표 및 인재상

갼	세부내용							
학과(전공) 교육목표	• 최신 식품생명과학 기술의 교육, 국가와 사회의 발전에 따라서 요구되는 수준 높은 식품생명공학 관련 교육을 실시함으로서 건강하고 풍요로운 복지건강사회의 실현에 기여 • 창의적 진취적 인재교육: 전문성과 창의성을 고루 갖춘 성실한 인재양성 • 협동과 사회봉사 교육: 더불어 잘 사는 사회를 이루기 위하여 협동하고 봉사하는 교육							
	학과 인재상	세부내용	본교 인재상과의 연계성					
	자기주도성이 있으면서 능동적으로 문제해결 능력이 우수한 인재	• 창조적이고 논리적인 사고	주도적 혁신융합 인재					
학과(전공) 인재상	전공에 대한 전문성과 창의성을 갖추고 혁신적인 학문적 융합 역량을 가진 인재	합리적 사고방식과 판단력 복지건강사회의 실현 공동체로서 화합과 단결 참단기술 접목을 통한 학문적 융합	비판적 지식탐구 인재					
	리더십이 있고 성실하며 타인과 협력을 잘하는 대인관계가 원만한 인재	• 전공지식에 대한 폭넓은 함양	사회적 가치추구 인재					

2. 식품생명공학과 전공능력

인재상	전 공능 력	전공능력의 정의
자기주도성이 있으면서 능동적으로 무제해결 능력이 우수하 인재	자기주도적 실행능력	스스로 목표를 설정하고 적절한 전략을 선택하여 계획을 수립하고 실행할 수 있는 능력
군세에걸 중복이 구구한 현재	창의적 문제해결 능력	창조적이고 논리적인 사고로 문제를 해결하는 능력
거구에 대한 <u>거무서</u> 의 한이서은 가호고	전공지식 기본 역량	식품생명공학 전공자에 부합하는 전문성과 창의적 사고를 할 수 있는 역량
전공에 대한 전문성과 창의성을 갖추고 혁신적인 학문적 융합 역량을 가진 인재	학문적 융합 역량	전공 교육을 통해 얻은 지식과 경험을 바탕으로 첨단기술들과 밀접한 관련 성을 이해하여 학문적 융합을 이룰 수 있는 역량
성실하며 타인과 협력을 잘하는	소통능력	상대방의 의견을 경청하고 공감할 수 있으며, 자신의 정보와 생각을 효과적으로 전달할 수 있는 역량
대인관계가 원만한 인재	협업능력	공동체의 목표를 달성하기 위하여 상호 신뢰를 바탕으로 함께 돕고 함께 생 활할 수 있는 역량

3. 전공능력 제고를 위한 전공 교육과정 구성 및 체계도 정립

가. 전공 교육과정 구성표

전공능력	학년	이수학기	교과목명
	3	1	독립심화학습 1
자기주도적 실행능력	3	2	독립심화학습 2
	4	1	졸업논문(식품생명공학)
창의적 문제해결 능력	4	1	식품생명공학캡스톤디자인 1
정의적 군세에걸 중목	4	2	식품생명공학캡스톤디자인 1
	1	1	생물, 화학, 미분적분학
	1	2	일반물리, 통계학
전공지식 기본역량	2	1	생물유기화학, 식품학개론, 분석화학및실험, 식품물리화학
신증시작 기본학생	2	2	식품생화학 1
	3	1	식품공학 1
	3	2	식품공학 2
	2	2	식품과건강, 식품위생학
	3	1	식품화학 1, 식품생화학 2, 바이오기능성식품소재, 식품나노과학개론
학문적 융합 역량	3	2	식품화학 2, 식품분석학및실험, 발효미생물공학, 유전자재조합식품론
	4	1	식품영양학, 식품저장학, 식품생명공학, 기능성식품학
	4	2	식품면역학, 식품포장학, 기능성식품학, 식품독성학. 식품분자생물학
	2	1	식품미생물학및실험 1
협업능력	2	2	식품미생물학및실험 2
합성증적	3	1	식품가공학및실험 1
	3	2	식품가공학및실험 2
소통능력	4	1	식품안전정책과법령
소동 	4	2	산학협력식품안전실무

나. 전공 교육과정 체계도

7171	od a L			교육과정							
전공(억당	1학년	2학년	3학년	4학년						
자기주도적	교과과정			독립심화학습 1, 2	식품생명공학캡스톤디자인 1, 2 졸업논문						
문제해결 능력 	특별 프로그램	• 교환학생: 본교와 협정을	• 해외우수석학특강: 해외의 저명한 우수 석학을 초빙하여 특강 • 교환학생: 본교와 협정을 맺은 외국 자매대학에 일정기간 동안 파견하여 수학하는 제도(1학기~2학기) • 취업세미나: 기업체의 연구소 및 인사담당자로부터 기업이 요구하는 인재상에 관한 정보제공								
전공지식 활 용 능력	교과과정	생물, 화학 미분적분학 일반물리 통계학	생물유기화학 식품학개론 분석화학및실험 식품물리화학 식품생화학 1	식품화학 1, 2 식품생화학 2 식품가공학및실험 1, 2 식품공학 1, 2 바이오기능성식품소재 식품나노과학개론 식품분석학및실험 발효미생물공학	식품영양학 식품저강학 식품생명공학 기능성식품학 식품안전정책과법령 식품면역학 식품포장학						
	특별 프로그램	• 학생참여 프로젝트(연구연수활동): 전공교육을 기반으로 실험실에서의 연구 프로젝트에 참여할 뿐만 아니라 직접 학술 연구에 참여함으로써 학생들의 연구 역량을 높임 • Research fair 및 황미제: 대학원 실험실 탐방 프로그램 등을 운영하여 학생들의 진로 및 미래 계획에 도움을 주는 행사									
사회맞춤형 실무능력	교과과정		식품위생학 식품미생물학및실험 1, 2 식품과건강	유전자재조합식품론	산학협력식품안전실무 식품독성학 식품분자생물학						
	특별 프로그램	• 현장연수 프로그램: 방학(학기) 중 전공과 관련된 산업체 또는 연구소 등에 파견되어 현장 실무를 직접 경험 • 캡스톤디자인: 공학계열 학생들에게 산업현장에서 부딪칠 수 있는 문제들을 해결할 수 있는 능력을 길러주기 위해 졸업 논문 대신 작품을 설계 및 제작하도록 하는 종합설계 교육프로그램									